Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Phaeophyceaean (Brown Algal) Extracts Activate Plant Defense Systems in Arabidopsis thaliana Challenged With Phytophthora cinnamomi.

Identifieur interne : 000095 ( Main/Exploration ); précédent : 000094; suivant : 000096

Phaeophyceaean (Brown Algal) Extracts Activate Plant Defense Systems in Arabidopsis thaliana Challenged With Phytophthora cinnamomi.

Auteurs : Md Tohidul Islam [Australie, Bangladesh] ; Han Ming Gan [Australie] ; Mark Ziemann [Australie] ; Hashmath Inayath Hussain [Australie] ; Tony Arioli [Australie] ; David Cahill [Australie]

Source :

RBID : pubmed:32765538

Abstract

Seaweed extracts are important sources of plant biostimulants that boost agricultural productivity to meet current world demand. The ability of seaweed extracts based on either of the Phaeophyceaean species Ascophyllum nodosum or Durvillaea potatorum to enhance plant growth or suppress plant disease have recently been shown. However, very limited information is available on the mechanisms of suppression of plant disease by such extracts. In addition, there is no information on the ability of a combination of extracts from A. nodosum and D. potatorum to suppress a plant pathogen or to induce plant defense. The present study has explored the transcriptome, using RNA-seq, of Arabidopsis thaliana following treatment with extracts from the two species, or a mixture of both, prior to inoculation with the root pathogen Phytophthora cinnamomi. Following inoculation, five time points (0-24 h post-inoculation) that represented early stages in the interaction of the pathogen with its host were assessed for each treatment and compared with their respective water controls. Wide scale transcriptome reprogramming occurred predominantly related to phytohormone biosynthesis and signaling, changes in metabolic processes and cell wall biosynthesis, there was a broad induction of proteolysis pathways, a respiratory burst and numerous defense-related responses were induced. The induction by each seaweed extract of defense-related genes coincident with the time of inoculation showed that the plants were primed for defense prior to infection. Each seaweed extract acted differently in inducing plant defense-related genes. However, major systemic acquired resistance (SAR)-related genes as well as salicylic acid-regulated marker genes (PR1, PR5, and NPR1) and auxin associated genes were found to be commonly up-regulated compared with the controls following treatment with each seaweed extract. Moreover, each seaweed extract suppressed P. cinnamomi growth within the roots of inoculated A. thaliana by the early induction of defense pathways and likely through ROS-based signaling pathways that were linked to production of ROS. Collectively, the RNA-seq transcriptome analysis revealed the induction by seaweed extracts of suites of genes that are associated with direct or indirect plant defense in addition to responses that require cellular energy to maintain plant growth during biotic stress.

DOI: 10.3389/fpls.2020.00852
PubMed: 32765538
PubMed Central: PMC7381280


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Phaeophyceaean (Brown Algal) Extracts Activate Plant Defense Systems in
<i>Arabidopsis thaliana</i>
Challenged With
<i>Phytophthora cinnamomi</i>
.</title>
<author>
<name sortKey="Islam, Md Tohidul" sort="Islam, Md Tohidul" uniqKey="Islam M" first="Md Tohidul" last="Islam">Md Tohidul Islam</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, VIC, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, VIC</wicri:regionArea>
<wicri:noRegion>VIC</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Pathology, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh.</nlm:affiliation>
<country xml:lang="fr">Bangladesh</country>
<wicri:regionArea>Department of Plant Pathology, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka</wicri:regionArea>
<wicri:noRegion>Dhaka</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gan, Han Ming" sort="Gan, Han Ming" uniqKey="Gan H" first="Han Ming" last="Gan">Han Ming Gan</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, VIC, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, VIC</wicri:regionArea>
<wicri:noRegion>VIC</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ziemann, Mark" sort="Ziemann, Mark" uniqKey="Ziemann M" first="Mark" last="Ziemann">Mark Ziemann</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, VIC, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, VIC</wicri:regionArea>
<wicri:noRegion>VIC</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hussain, Hashmath Inayath" sort="Hussain, Hashmath Inayath" uniqKey="Hussain H" first="Hashmath Inayath" last="Hussain">Hashmath Inayath Hussain</name>
<affiliation wicri:level="1">
<nlm:affiliation>Seasol International R&D Department, Bayswater, VIC, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Seasol International R&D Department, Bayswater, VIC</wicri:regionArea>
<wicri:noRegion>VIC</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Arioli, Tony" sort="Arioli, Tony" uniqKey="Arioli T" first="Tony" last="Arioli">Tony Arioli</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, VIC, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, VIC</wicri:regionArea>
<wicri:noRegion>VIC</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Seasol International R&D Department, Bayswater, VIC, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Seasol International R&D Department, Bayswater, VIC</wicri:regionArea>
<wicri:noRegion>VIC</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cahill, David" sort="Cahill, David" uniqKey="Cahill D" first="David" last="Cahill">David Cahill</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, VIC, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, VIC</wicri:regionArea>
<wicri:noRegion>VIC</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32765538</idno>
<idno type="pmid">32765538</idno>
<idno type="doi">10.3389/fpls.2020.00852</idno>
<idno type="pmc">PMC7381280</idno>
<idno type="wicri:Area/Main/Corpus">000100</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000100</idno>
<idno type="wicri:Area/Main/Curation">000100</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000100</idno>
<idno type="wicri:Area/Main/Exploration">000100</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Phaeophyceaean (Brown Algal) Extracts Activate Plant Defense Systems in
<i>Arabidopsis thaliana</i>
Challenged With
<i>Phytophthora cinnamomi</i>
.</title>
<author>
<name sortKey="Islam, Md Tohidul" sort="Islam, Md Tohidul" uniqKey="Islam M" first="Md Tohidul" last="Islam">Md Tohidul Islam</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, VIC, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, VIC</wicri:regionArea>
<wicri:noRegion>VIC</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Pathology, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh.</nlm:affiliation>
<country xml:lang="fr">Bangladesh</country>
<wicri:regionArea>Department of Plant Pathology, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka</wicri:regionArea>
<wicri:noRegion>Dhaka</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gan, Han Ming" sort="Gan, Han Ming" uniqKey="Gan H" first="Han Ming" last="Gan">Han Ming Gan</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, VIC, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, VIC</wicri:regionArea>
<wicri:noRegion>VIC</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ziemann, Mark" sort="Ziemann, Mark" uniqKey="Ziemann M" first="Mark" last="Ziemann">Mark Ziemann</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, VIC, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, VIC</wicri:regionArea>
<wicri:noRegion>VIC</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hussain, Hashmath Inayath" sort="Hussain, Hashmath Inayath" uniqKey="Hussain H" first="Hashmath Inayath" last="Hussain">Hashmath Inayath Hussain</name>
<affiliation wicri:level="1">
<nlm:affiliation>Seasol International R&D Department, Bayswater, VIC, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Seasol International R&D Department, Bayswater, VIC</wicri:regionArea>
<wicri:noRegion>VIC</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Arioli, Tony" sort="Arioli, Tony" uniqKey="Arioli T" first="Tony" last="Arioli">Tony Arioli</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, VIC, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, VIC</wicri:regionArea>
<wicri:noRegion>VIC</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Seasol International R&D Department, Bayswater, VIC, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Seasol International R&D Department, Bayswater, VIC</wicri:regionArea>
<wicri:noRegion>VIC</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cahill, David" sort="Cahill, David" uniqKey="Cahill D" first="David" last="Cahill">David Cahill</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, VIC, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, VIC</wicri:regionArea>
<wicri:noRegion>VIC</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in plant science</title>
<idno type="ISSN">1664-462X</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Seaweed extracts are important sources of plant biostimulants that boost agricultural productivity to meet current world demand. The ability of seaweed extracts based on either of the Phaeophyceaean species
<i>Ascophyllum nodosum</i>
or
<i>Durvillaea potatorum</i>
to enhance plant growth or suppress plant disease have recently been shown. However, very limited information is available on the mechanisms of suppression of plant disease by such extracts. In addition, there is no information on the ability of a combination of extracts from
<i>A. nodosum</i>
and
<i>D. potatorum</i>
to suppress a plant pathogen or to induce plant defense. The present study has explored the transcriptome, using RNA-seq, of
<i>Arabidopsis thaliana</i>
following treatment with extracts from the two species, or a mixture of both, prior to inoculation with the root pathogen
<i>Phytophthora cinnamomi</i>
. Following inoculation, five time points (0-24 h post-inoculation) that represented early stages in the interaction of the pathogen with its host were assessed for each treatment and compared with their respective water controls. Wide scale transcriptome reprogramming occurred predominantly related to phytohormone biosynthesis and signaling, changes in metabolic processes and cell wall biosynthesis, there was a broad induction of proteolysis pathways, a respiratory burst and numerous defense-related responses were induced. The induction by each seaweed extract of defense-related genes coincident with the time of inoculation showed that the plants were primed for defense prior to infection. Each seaweed extract acted differently in inducing plant defense-related genes. However, major systemic acquired resistance (SAR)-related genes as well as salicylic acid-regulated marker genes (
<i>PR1</i>
,
<i>PR5</i>
, and
<i>NPR1</i>
) and auxin associated genes were found to be commonly up-regulated compared with the controls following treatment with each seaweed extract. Moreover, each seaweed extract suppressed
<i>P. cinnamomi</i>
growth within the roots of inoculated
<i>A. thaliana</i>
by the early induction of defense pathways and likely through ROS-based signaling pathways that were linked to production of ROS. Collectively, the RNA-seq transcriptome analysis revealed the induction by seaweed extracts of suites of genes that are associated with direct or indirect plant defense in addition to responses that require cellular energy to maintain plant growth during biotic stress.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">32765538</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-462X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>11</Volume>
<PubDate>
<Year>2020</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in plant science</Title>
<ISOAbbreviation>Front Plant Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Phaeophyceaean (Brown Algal) Extracts Activate Plant Defense Systems in
<i>Arabidopsis thaliana</i>
Challenged With
<i>Phytophthora cinnamomi</i>
.</ArticleTitle>
<Pagination>
<MedlinePgn>852</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fpls.2020.00852</ELocationID>
<Abstract>
<AbstractText>Seaweed extracts are important sources of plant biostimulants that boost agricultural productivity to meet current world demand. The ability of seaweed extracts based on either of the Phaeophyceaean species
<i>Ascophyllum nodosum</i>
or
<i>Durvillaea potatorum</i>
to enhance plant growth or suppress plant disease have recently been shown. However, very limited information is available on the mechanisms of suppression of plant disease by such extracts. In addition, there is no information on the ability of a combination of extracts from
<i>A. nodosum</i>
and
<i>D. potatorum</i>
to suppress a plant pathogen or to induce plant defense. The present study has explored the transcriptome, using RNA-seq, of
<i>Arabidopsis thaliana</i>
following treatment with extracts from the two species, or a mixture of both, prior to inoculation with the root pathogen
<i>Phytophthora cinnamomi</i>
. Following inoculation, five time points (0-24 h post-inoculation) that represented early stages in the interaction of the pathogen with its host were assessed for each treatment and compared with their respective water controls. Wide scale transcriptome reprogramming occurred predominantly related to phytohormone biosynthesis and signaling, changes in metabolic processes and cell wall biosynthesis, there was a broad induction of proteolysis pathways, a respiratory burst and numerous defense-related responses were induced. The induction by each seaweed extract of defense-related genes coincident with the time of inoculation showed that the plants were primed for defense prior to infection. Each seaweed extract acted differently in inducing plant defense-related genes. However, major systemic acquired resistance (SAR)-related genes as well as salicylic acid-regulated marker genes (
<i>PR1</i>
,
<i>PR5</i>
, and
<i>NPR1</i>
) and auxin associated genes were found to be commonly up-regulated compared with the controls following treatment with each seaweed extract. Moreover, each seaweed extract suppressed
<i>P. cinnamomi</i>
growth within the roots of inoculated
<i>A. thaliana</i>
by the early induction of defense pathways and likely through ROS-based signaling pathways that were linked to production of ROS. Collectively, the RNA-seq transcriptome analysis revealed the induction by seaweed extracts of suites of genes that are associated with direct or indirect plant defense in addition to responses that require cellular energy to maintain plant growth during biotic stress.</AbstractText>
<CopyrightInformation>Copyright © 2020 Islam, Gan, Ziemann, Hussain, Arioli and Cahill.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Islam</LastName>
<ForeName>Md Tohidul</ForeName>
<Initials>MT</Initials>
<AffiliationInfo>
<Affiliation>School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, VIC, Australia.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gan</LastName>
<ForeName>Han Ming</ForeName>
<Initials>HM</Initials>
<AffiliationInfo>
<Affiliation>School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, VIC, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ziemann</LastName>
<ForeName>Mark</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, VIC, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hussain</LastName>
<ForeName>Hashmath Inayath</ForeName>
<Initials>HI</Initials>
<AffiliationInfo>
<Affiliation>Seasol International R&D Department, Bayswater, VIC, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Arioli</LastName>
<ForeName>Tony</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, VIC, Australia.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Seasol International R&D Department, Bayswater, VIC, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cahill</LastName>
<ForeName>David</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, VIC, Australia.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>07</Month>
<Day>07</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Plant Sci</MedlineTA>
<NlmUniqueID>101568200</NlmUniqueID>
<ISSNLinking>1664-462X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Arabidopsis thaliana</Keyword>
<Keyword MajorTopicYN="N">Ascophyllum nodosum</Keyword>
<Keyword MajorTopicYN="N">Durvillaea potatorum</Keyword>
<Keyword MajorTopicYN="N">Phytophthora cinnamomi</Keyword>
<Keyword MajorTopicYN="N">RNA-Seq</Keyword>
<Keyword MajorTopicYN="N">seaweed</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>03</Month>
<Day>31</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>05</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>8</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>8</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>8</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32765538</ArticleId>
<ArticleId IdType="doi">10.3389/fpls.2020.00852</ArticleId>
<ArticleId IdType="pmc">PMC7381280</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Front Plant Sci. 2017 Oct 27;8:1856</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29163585</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Jul;55(1):53-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18346188</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes (Basel). 2018 Jul 04;9(7):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29973557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Evol. 2003 Jan;56(1):77-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12569425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2003 Jun;21(9):829-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12789499</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Nov;18(11):3058-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17138700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Aug 05;5:358</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25161657</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Dis. 2013 Aug;97(8):1012-1017</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30722481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Rep. 2020 Feb;47(2):935-942</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31741259</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2016 Oct;21(10):818-822</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27507609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Nov 04;6:950</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26583025</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2017 Aug 03;8:1362</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28824691</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2019 Jan;97(1):134-147</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30548980</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol Report. 2015;33:624-637</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26696694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2008 Nov;46(11):941-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18674922</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2015 Sep;169(1):793-802</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26206852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2019 Jul 12;15(7):e1007747</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31299058</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2016 Apr;67(8):2519-2532</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26931169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2015 Dec 07;16(12):29120-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26690131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2010 Apr 22;7(4):290-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20413097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2014;9(2):e27700</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24492469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Feb;23(2):823-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21335377</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2010 Dec 19;10:281</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21167067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Aug;153(4):1771-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20508139</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2016 Jul 08;11(7):e0158159</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27391785</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2019 May 29;10:655</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31191576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Nov 12;5:642</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25429297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2018 Aug 2;8(1):11612</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30072760</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2020 Jan 11;21(2):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31940839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2017 Dec 27;12(12):e0190341</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29281727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2019 Sep 11;14(9):e0220562</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31509543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Mar 14;9(3):e91851</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24632678</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2008 Jun;21(6):745-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18624639</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2011 Nov 01;2:74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22639609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2005;43:205-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16078883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Mar;37(6):914-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14996223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2019 Jun 26;10:822</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31297126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Funct Integr Genomics. 2013 Jun;13(2):217-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23430324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Oct;40(2):200-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15447647</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2018 Jan;20(1):130-142</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28881083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2012 Aug;57:120-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22698755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2013 Aug;64(11):3385-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23833195</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Sep 04;6:686</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26388886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Phycol. 2015;27(5):2007-2015</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26435578</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Res. 2018 Jul - Aug;212-213:29-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29853166</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Jul 30;285(31):24078-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20463027</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Adv. 2020 May - Jun;40:107503</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31901371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Jun 27;103(26):10098-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16785434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Funct Plant Biol. 2017 Apr;44(4):386-399</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32480572</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2000 Dec;12(12):2383-2394</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11148285</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2018 May;218(3):1205-1216</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29465773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 1999 Sep;63(3):708-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10477313</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2018 Feb;93(4):614-636</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29266460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2016 Nov;212(3):627-636</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27411159</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Jul;153(3):1144-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20488891</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2011 Feb;12(2):187-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21199568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mar Drugs. 2018 Jun 28;16(7):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29958402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2017 Jan;173(1):600-613</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27856916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2016 Apr 13;64(14):2980-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27010818</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2009 Jun;14(6):310-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19443266</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010 Jan 26;5(1):e8904</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20126659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Phycol. 2015;27(5):2157-2161</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26435579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2003 Sep;53(1-2):61-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14756307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2019 Apr 16;10:494</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31057591</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Funct Integr Genomics. 2008 Nov;8(4):387-405</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18512091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2017 Jan 4;45(D1):D1029-D1039</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27799469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2014 Aug;7(8):1267-1287</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24777989</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2012 Dec;24(12):5123-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23221596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Oct;15(10):2408-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14507999</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2004 Aug;7(4):400-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15231262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2017 Apr;29(4):666-680</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28320784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 Aug;159(4):1857-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22740615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2015 Apr;8(4):521-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25744358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2001 Oct;4(5):407-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11597498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Nov 29;414(6863):562-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11734859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Oct 01;5:488</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25324848</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Oct;48(2):238-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17018034</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2008 Apr 4;133(1):177-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18394997</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Feb;143(2):838-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17158583</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2018 Feb 23;19(2):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29473858</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2016 Jul;28(7):1701-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27317676</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2000 May;210(6):979-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10872231</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2019 Feb 13;10:102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30815005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2011 Jul;191(2):360-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21466556</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Oct;148(2):818-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18689446</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2017 Feb 1;58(2):307-319</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27837097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2001 Dec;25(4):402-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11846609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2017 Jun 13;114(24):6388-6393</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28559313</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2012 Nov 21;13:643</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23171218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 May;206(3):948-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25659829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2018 Feb;19(2):260-285</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28519717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2010 May;33(5):828-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20040062</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2013 May;6(3):872-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23118477</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2018 Jul 04;9:928</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30022987</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Oct 3;283(40):26996-7006</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18693252</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Apr 10;98(8):4788-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11287667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2014 Apr 22;165(2):791-809</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24755512</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1990 Jul;280(1):33-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2162153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2004;42:185-209</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15283665</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2001 Nov;28(3):293-305</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11722772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Aug 27;6:671</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26379695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Biol. 2009 Jan 15;325(2):412-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18992236</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2008 Dec;229(1):87-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18807070</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2020 Jan 23;71(3):850-864</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31665431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Phycol. 2018;30(5):2943-2951</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30416260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 Jun;159(2):810-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22535423</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2016 Sep 22;16(1):205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27658453</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Oct;148(2):1021-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18667719</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2015 Nov;56(11):2158-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26363358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2014 May;37(5):1114-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24131360</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Feb 10;5:17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24575102</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Plants. 2016 Jan 25;2:15218</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27250875</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2019 May 24;14(5):e0217130</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31125369</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Australie</li>
<li>Bangladesh</li>
</country>
</list>
<tree>
<country name="Australie">
<noRegion>
<name sortKey="Islam, Md Tohidul" sort="Islam, Md Tohidul" uniqKey="Islam M" first="Md Tohidul" last="Islam">Md Tohidul Islam</name>
</noRegion>
<name sortKey="Arioli, Tony" sort="Arioli, Tony" uniqKey="Arioli T" first="Tony" last="Arioli">Tony Arioli</name>
<name sortKey="Arioli, Tony" sort="Arioli, Tony" uniqKey="Arioli T" first="Tony" last="Arioli">Tony Arioli</name>
<name sortKey="Cahill, David" sort="Cahill, David" uniqKey="Cahill D" first="David" last="Cahill">David Cahill</name>
<name sortKey="Gan, Han Ming" sort="Gan, Han Ming" uniqKey="Gan H" first="Han Ming" last="Gan">Han Ming Gan</name>
<name sortKey="Hussain, Hashmath Inayath" sort="Hussain, Hashmath Inayath" uniqKey="Hussain H" first="Hashmath Inayath" last="Hussain">Hashmath Inayath Hussain</name>
<name sortKey="Ziemann, Mark" sort="Ziemann, Mark" uniqKey="Ziemann M" first="Mark" last="Ziemann">Mark Ziemann</name>
</country>
<country name="Bangladesh">
<noRegion>
<name sortKey="Islam, Md Tohidul" sort="Islam, Md Tohidul" uniqKey="Islam M" first="Md Tohidul" last="Islam">Md Tohidul Islam</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000095 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000095 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32765538
   |texte=   Phaeophyceaean (Brown Algal) Extracts Activate Plant Defense Systems in Arabidopsis thaliana Challenged With Phytophthora cinnamomi.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32765538" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024